Рейтинговые книги
Читем онлайн Коннектом. Как мозг делает нас тем, что мы есть - Себастьян Сеунг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 66 67 68 69 70 71 72 73 74 ... 97

Письмо, в сущности, послужило своего рода поворотным пунктом в отношениях Маркрама с компанией IBM. В 2005 году они начинали эти отношения как союзники: тогда IBM подписала контракт с возглавляемым Маркрамом научно-учебным заведением – швейцарской École Polytechnique Fédérale (Федеральной политехнической школой), расположенной в Лозанне. Целью их совместного проекта являлась демонстрация возможностей Blue Gene/L – созданного IBM суперкомпьютера, на тот момент самого быстродействующего в мире. В рамках этого проекта компьютер должен был построить цифровую имитацию мозга. Маркрам обозвал этот проект Blue Brain («Синий мозг»), намекая на прозвище компании IBM – Big Blue («Синий великан»). Но в их отношениях произошло охлажд ение, когда Модха запустил конкурирующий проект по цифровой имитации мозга в исследовательском центре IBM, расположенном в калифорнийском Алмадене.

Маркрам пытался защитить собственные труды, обвиняя конкурента в мошенничестве. Но тем самым он бросил тень на всю затею. Всякий может сгенерировать несметное количество уравнений и объявить их подобием мозга. (В наши дни для этого даже не нужен суперкомпьютер.) Но где доказательства? Откуда нам знать – может, Маркрам тоже фальсификатор?

Его шикарный суперкомпьютер не должен отвлекать нас от недостатка его исследований – возможно, рокового: не существует четкого критерия для оценки успешности такой работы. В будущем «Синий мозг» можно будет оценить с помощью специальных разновидностей текста Тьюринга, описанных выше, но такой тест имеет смысл применять, лишь когда имитация близка к реальности. А эти якобы удавшиеся модели мышиного и кошачьего мозга еще очень далеки от своих прототипов. В обозримом будущем никакой самозванец, прикинувшись мышиным Мартином Герром, не сможет надуть своих собратьев. Тест Тьюринга подскажет нам, когда мы достигнем цели. Но пока этот день не настал, нам все-таки не помешает отыскать какой-то метод оценки, который даст нам понять, продвигаемся ли мы в нужном направлении.

Да и потом, продвигаются ли вообще эти исследователи вперед? Письмо Маркрама чересчур длинное, чтобы приводить его здесь полностью, так что я лишь перескажу его суть, отфильтровав науку от сарказма.

«Синий мозг» состоит из моделей нейронов, сложнейшим образом обрабатывающих электрические и химические сигналы. Они ближе к реальным нейронам, чем модельные нейроны в имитации Модхи, которая, в свою очередь, более реалистична, чем модель неравноценного голосования, которую мы обсуждали выше.

Существует масса эмпирических доказательств в пользу того, что модель неравноценного голосования описывает многие нейроны с неплохим приближением. Но мы знаем, что эта модель несовершенна и может даже оказаться совершенно неприменимой к некоторым нейронам. Маркрам прав, когда подчеркивает, что у реальных нейронов есть немало тонких особенностей, которые не учитываются простыми моделями. Один-единственный нейрон – сам по себе целый мир. Как и любая клетка, он представляет собой чрезвычайно сложный ансамбль многочисленных и разнообразных молекул, машину, собранную из молекулярных деталей. А каждая из этих молекул, в свою очередь, является миниатюрной машинкой, сделанной из атомов.

Как я уже упоминал, ионные каналы относятся к одному из важнейших классов молекул, поскольку они ответственны за передачу электрических сигналов в нейронах. Аксоны, дендриты и синапсы содержат различные типы ионных каналов – или, по крайней мере, содержат разное их количество. Вот почему у этих частей нейронов разные электрические характеристики. В принципе каждый нейрон уникален по своему поведению благодаря уникальной конфигурации своих ионных каналов. Всё это очень далеко от модели неравноценного голосования, согласно которой все нейроны, в сущности, одинаковы. Плохая новость для имитаторов мозга? Если нейроны так бесконечно разнообразны, как же мы добьемся хоть какого-то успеха в их моделировании? Измеряя характеристики одного нейрона, мы ничего не выясним о другом.

Как вырваться из этой трясины бесконечного разнообразия? Есть одна надежда: типы нейронов. Может быть, вы помните, как Кахаль разделил нейроны на типы, основываясь на их месторасположении и форме. Эти свойства можно сравнить с местом обитания животного и его внешним видом. Когда нейробиолог говорит о «двойной букетной клетке неокортекса», он напоминает мне натуралиста, рассказывающего о полярном медведе, обитающем в Арктике. Натуралист может подчеркнуть, что белые медведи, в отличие от бурых, все охотятся на тюленей. Точно так же и нейроны одного типа, как правило, ведут себя сходным образом, когда речь идет о передаче электрического сигнала. Вероятно, это происходит благодаря тому, что ионные каналы в них распределены похоже.

Если это так, то в действительности нейронное разнообразие конечно. Можно составить каталог всех типов нейронов, «список запчастей» для мозга, и затем сконструировать модель для каждого типа. Мы предполагаем, что каждая такая модель будет правомочна для всех нейронов данного типа во всяком нормальном мозгу, подобно тому как мы предполагаем, что все однотипные резисторы ведут себя сходным образом в любом электронном приборе. А создав модели для всех нейронных типов, мы будем готовы к цифровой имитации мозга.

Специалисты из лаборатории Маркрама охарактеризовали электрические свойства многих типов неокортикальных нейронов – путем экспериментов in vitro. Основываясь на этих данных, они смоделировали каждый нейронный тип в виде сотен взаимодействующих электрических ячеек, что может служить промежуточным шагом на пути к имитации миллионов ионных каналов нейрона. Маркрам заслуживает благодарности за реалистичность многоячеечных модельных нейронов, задействованных в «Синем мозге».

Однако у «Синего мозга» имеется один серьезный недостаток. Поскольку ни одного кортикального коннектома мы пока не выявили, не совсем понятно, каким образом соединять эти модели нейронов друг с другом. Маркрам следует в этом правилу Питерса, теоретическому принципу, согласно которому схема связей в мозгу выстраивается случайным образом. Случайные столкновения аксонов и дендритов в спутанных «макаронах» мозга приводят к возникновению точек контакта. В каждой из таких точек с определенной вероятностью может образоваться синапс. По сути, мы словно бы наблюдаем за результатами подбрасывания искривленной монеты.

Правило Питерса концептуально связано с идеей, о которой мы уже говорили: речь идет о нейронном дарвинизме, предполагающем случайный процесс образования синапсов. Однако эти две идеи не равнозначны. Нейронный дарвинизм подразумевает самоуничтожение синапсов, регулируемое уровнем их активности, а значит, остающиеся связи не будут случайными. Специалисты уже обнаружили примеры нарушения правила Питерса. И я подозреваю, что такие примеры будут только множиться. Судя по всему, это правило так долго продержалось в науке лишь из-за того, что мы слишком мало знали о коннектомах.

Как выражаются ученые-компьютерщики, «мусор на входе – мусор на выходе». Если схема нейронных связей «Синего мозга» выстроена неверно, то и соответствующая модель тоже неверна. Однако не будем слишком уж придирчивы. В будущем Маркрам всегда сможет включить в свой «Синий мозг» информацию, почерпнутую из коннектомов. И тогда его имитация приблизится к реальности, не так ли?

Чтобы ответить на этот вопрос, давайте снова обратимся к круглому червю C. elegans. Его коннектом уже известен в отличие от коннектома человеческого неокортекса. Даже удивительно, что лишь небольшие части нервной системы червя удалось смоделировать цифровым способом. Эти модели помогают лучше понять некоторые простые картины поведения животного, однако все эти работы носят фрагментарный характер. Никто пока и близко не подошел к тому, чтобы смоделировать нервную систему червя целиком.

К сожалению, нам не хватает хороших моделей нейронов C. elegans. Как я уже говорил, большинство этих нейронов даже не дают импульсы, так что модель неравноценного голосования здесь неприменима. Чтобы построить модель для нейронов, нужно измерить какие-то их параметры. Но, как выясняется, для C. elegans это сделать труднее, чем для мышиных или даже человеческих нейронов. Кроме того, нам не хватает информации о синапсах этого червя. Существующий коннектом даже не позволяет уточнить, какие это синапсы – возбуждающие или ингибирующие.

Итак, «Синему мозгу» не хватает коннектома, а червю C. elegans не хватает моделей нейронных типов. А ведь для успешной цифровой имитации мозга или целой нервной системы нужны оба элемента. Значит, наше первоначальное утверждение следует переформулировать так: «Вы – это ваш коннектом плюс модели нейронных типов». (Будем предполагать, что коннектом точно описывает тип каждого нейрона.) Однако модели нейронных типов, скорее всего, будут содержать значительно меньше информации, чем коннектом, поскольку большинство ученых полагает, что нейронных типов гораздо меньше, чем самих нейронов. В этом смысле максима «Вы – это ваш коннектом» остается весьма близкой к истине. Более того, выше мы уже сделали допущение, что все однотипные нейроны должны вести себя сходным образом в любом нормальном мозгу, подобно тому как все белые медведи в нормальных условиях охотятся на тюленей. Если мы оцифруем множество людей, все эти имитации будут иметь одни и те же модели нейронных типов. Уникальную информацию о данной личности по-прежнему будет нести ее коннектом.

1 ... 66 67 68 69 70 71 72 73 74 ... 97
На этой странице вы можете бесплатно читать книгу Коннектом. Как мозг делает нас тем, что мы есть - Себастьян Сеунг бесплатно.
Похожие на Коннектом. Как мозг делает нас тем, что мы есть - Себастьян Сеунг книги

Оставить комментарий